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WHO AM I

• Maître de conférences (since September) in Computer 
Science (LIRIS, Lyon 1)

• Traditional topics:
‣ “Network Science”

- Network Analysis, Network Mining, “Community Detection”, Dynamic Networks, etc.
‣ “Data Science”

- Learning knowledge from data
‣ “Complex Systems”

- Systems composed of multiple parts in interaction, non-linear behaviour, cannot be studied 
by reductionism: 

- Interactions between entities => Network



CITIES ? NATURAL SYSTEMS ?

• Cities and natural systems are complex systems

• 2015-2016: Working on Vél’innov ANR Project: understanding, 
characterising activity in Bike Sharing Systems (BSS)

• Currently: starting a collaboration with Claire Lesieur on the 
organisation of proteins



ORGANISATION OF 
COMPLEX SYSTEMS

• Usually, there is not one network of a complex system:
‣ In cities: 

- Network of proximity between buildings
- Network of trips using public transportations
- Network of trips using bicycle
- Network of roads
- Network of socio-demographic similarities
- Network of phone calls between neighbourhoods
- …

‣ Each dataset can be modelled by countless networks, using thresholds, 
temporal aggregations, etc.

‣ I’m not working on a network in particular, just networks as models of 
interactions inside complex systems (Complex networks ?)



ORGANISATION OF 
COMPLEX SYSTEMS

• Complex Networks are not random. They have a particular 
organisation.

• My ultimate goal is to understand this organisation.
‣ Find underlying rules explaining difference between observed and random 

networks
‣ Spatial organisation is one potential candidate to explain the structure 

of networks



NETWORK & SPACE

• What is a spatial network model: 
‣ Nodes are characterised by a position, i.e an x-dimensional vector
‣ The probability of observing an edge depends on the distance between nodes



NETWORK & SPACE

• Networks and spatial organisation have a complex history
‣ First network models were often spatial-like:

- Regular grids (nodes on a grid, edges at fix distance)
- Watts-strogatz (nodes on a circle, most edges depends on distance)

‣ Later models often have no spatial structure
- Community-based
- Dynamic models (preferential attachment, forest fire, …)

‣ Most network representations are based on 2D projections

‣ The come back of spatial organisation: network embedding.
- Given a network, which position of nodes better explain its organisation ?



AN EXAMPLE: VÉLO’V



VÉLO’V

Bicycle Sharing System (BSS) in Lyon

Dataset: trips (5y) + sociodemographic around stations



VÉLO’V

Nodes: station (2D position)
Edges: number of trips over a period

(a) Spatial Eccentricity (b) Degree bias

Fig. 1: Illustration of computed spatial eccentricity and degree bias for Lyon’s
BSS dataset and typical gravity null model.

follows [7]:

f(d) =

P
i,j|dij=d

AijP
i,j|dij=d

ninj

(2)

with Aij the observed flow (number of trips, communications, etc.) between
nodes i and j.

We can note that in the particular case where the distance has no e↵ect, the
deterrence function is a constant function, and the gravity-based model becomes
exactly the configuration model

2.1 Limits of the gravity-based model

There is a bias when computing directly the gravity-based null-model on a col-
lected spatial network, as it has been done in [6,7] on BSS or any other dataset:
the observed strength of nodes (number of incoming/outgoing trips) is chosen
as a proxy for the intrinsic strength. Because the observed strength of a node
in a network generated according to the gravity null-model depends both on its
intrinsic strength and on its distance to other nodes, this result systematically
underestimates the intrinsic strength of nodes with few nodes around (those lo-
cated at the periphery) and overestimate the strength of those located in the
centre. This bias can be checked on any dataset, as we illustrate in Fig.1, by
computing the spatial eccentricity of nodes, defined as the average distance to
all other stations, and the degree bias db for in/out degrees, defined as :

db(i) =
degGM (i)

degD(i)
(3)

with degGM the degree according to the gravity model and degD the degree
observed in original data.



NETWORK MODEL 1

• Random network

• #trips between any pair of 
station is the same

Model complexity:
1

Evaluation of the model : 
diff between observed network and model 

Model precision:
+



NETWORK MODEL 2

• Configuration model

• #trips between any pair of 
station depends on their 
“popularity”

Model complexity:
n

Model precision:
++



NETWORK MODEL 3

• Simple Gravity

• #trips between any pair of 
station depends on their 
“popularity” and their distance

Model complexity:
n+2n

Model precision:
++++



NETWORK MODEL 4
• Gravity with custom 

deterrence function

• #trips between any pair of 
station depends on their 
“popularity” and their distance.

• Distance influence learnt from 
data

Model complexity:
n+2n+a

Model precision:
++++



DETERRENCE FUNCTION
Computation of a deterrence function: 
Impact of distance on edge probability

(Comparing observation with Configuration Model) 

A null model for spatial networks using doubly
constrained gravity model and computed deterrence

function
Remy Cazabet, Pierre Borgnat, Pablo Jensen

Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique,
F-69342 Lyon, France

Abstract—Null models have many applications on networks,
from testing the significance of observations to the conception
of algorithms such as community detection. In topological (non-
spatial) networks, most common null-models conserve the degree
distribution. In this article, we propose a null-model adapted to
spatial networks, that conserves both the spatial structure and
the degrees of nodes. We test this model both on synthetic and
collected networks.

I. INTRODUCTION

In recent years, complex networks [1] have become an
important topic of research, and are used to model systems
and interactions in many different fields, from social sciences
to biology.

When elements represented as vertices have a location in
space, and the distance between them plays a role, we use
spatial networks to represent them. Examples of networks
modelled by spatial networks include transportation networks,
infrastructure networks, mobility networks, or even neural
networks. Several models of spatial networks exist, such as
random planar graph [2], or generalizations of the Watts-
Strogatz model [3]. The distinctive characteristic of spatial
network models is that the probability of observing an edge
between vertices depends on the distance between them. This
characteristic can be represented by a deterrence function. For
a broad overview of existing work on spatial networks, one
can turn to [4].

In complex networks, null-models are frequently used to
compare the observed properties (assortativity, diffusion, clus-
tering, frequency of patterns, etc.) of a ground truth network
with the ones in a randomized version of this network. The
most commonly used null model, often called the configuration
model [5], rewires randomly connections between vertices
while conserving the degree distribution.

Previously proposed null-models for spatial networks con-
serve the position of nodes, the deterrence function and the
total number of edges, but not the degree distribution. In this
article, we propose a null model for spatial networks that
conserve as much as possible both the spatial properties and
the degrees of nodes.

A. Related Works

In [6], the authors study several socio-spatial properties
of location-based social networks, such as the average ge-
ographical distance between friends or the distribution of

social link length. They compare these properties to two
randomized version: the social null-model conserves the ties,
but shuffles the position of users, while the Geo null-model

uses a probability of friendship P (d) to assign edges randomly
between nodes. P (d) is defined as the probability of observing
a friendship between individuals situated at a given distance.
This model conserves the total number of edges and the
deterrence function as much as possible, but not the degree
distribution of nodes, which only depends on the distance to
other nodes.

In [7], the authors propose a method to find space-
independent communities in spatial networks. They success-
fully uncover a linguistic partition in a Belgian mobile phone
calls dataset, that was otherwise hidden by geographical prox-
imities. To do so, they use a modified version of the quality
function called Modularity [8]. The modularity of a given
partition of a network depends on the difference between the
number of edges present inside communities in the original
graph and the average number of edges present inside these
same communities in a randomized version of the network,
usually according to the configuration model.

The authors of [7] propose to use instead a geographical
null-model, inspired by gravity models [9], as appearing in
transportation domain:

P
Spa
ij = NiNjf(dij)

Ni is a notion of importance of node i and the deterrence
function is defined as:

f(d) =

P
i,j|dij=d AijP

i,j|dij=d NiNj

Aij is the flow (Number of trips, communications, etc.)
observed between nodes i and j in the Origin/Destination
matrix T . The deterrence function can be interpreted as the
weighted average of the probability Aij/(NiNj) for a link to
exist at distance d..

Similarly to the model proposed in [6], it preserves the
spatial properties by learning a deterrence function, but it does
not preserve the average degree of nodes. The difference is that
the degree of nodes does not depend only on their location,
but also on their importance Ni, that will influence the degree
distribution.

Distance d (meters)

f(d)



DETERRENCE FUNCTION

Distance d (meters)

f(d)



DETERRENCE FUNCTION

Distance d (meters)

f(d) a=#bins



NETWORK MODEL 4
• Gravity with custom 

deterrence function

• #trips between any pair of 
station depends on their 
“popularity” and their distance.

• Distance influence learnt from 
data

Model complexity:
n+2n+a

Model precision:
++++



NETWORK MODEL 5

• Gravity with custom 
deterrence function and 
conservation of degrees

• Same as before, but constraint 
to conserve node degrees

Model complexity:
n+2n+a

Model precision:
+++++To do so, we take inspiration from the doubly constrained gravity model [13],

and adapt it to the case of spatial networks with estimated deterrence function.
The intuition is that we are searching for values of intrinsic strength that would
best explain the observed degrees. We present the method in its more general
form, adapted to oriented weighted networks. Therefore, we compute separately
for each node an Incoming estimated Intrinsic trength (nIeis) and an Outgoing

estimated Intrinsic Strength (nOeis). For non-oriented networks, nIeis = nOeis.
The method consists in iteratively estimating the new values for nIeis and

nOeis that satisfies the observed indegrees (degin) and outdegrees (degout) con-
straints.

We can define them recusively as :

nIeis =
degout(i)P

i
nOeisf(dij))

, nOeis =
degin(i)P
i
nIeisf(dij)

(7)

And the corresponding Degree Constrained gravity model is:

PDCgrav

ij
= nOeisnIeisf(dij) (8)

Starting with initial values nOeis = degout and nIeis = degin, we first com-
pute all values for nOeis, then all values for nIeis, and so on and so forth until the
degrees obtained in the gravity model defined in Eq. 8 are close enough to the
target network. Although this process is known to converge [13], in this article
we will use a fix number of iterations, i = 5, to avoid discussions on stopping
criterium and convergence time.

3.1 Recomputation of the deterrence function

Because the computed deterrence function depends on the intrinsic strength of
nodes, estimating it using observed degrees as a proxy leads to a biased ap-
proximation. By recomputing the deterrence function after each iteration of the
algorithm, we can in part correct this bias.

3.2 Summary of the proposed method

The complete process for constructing a spatial null model can be summarized
as follows:

1. Initialise nIeis and nOeis with nodes out and in degrees
2. Compute the deterrence function according to Eq. 2
3. Update all nOeis according to Eq. 7
4. Update all nIeis according to Eq. 7
5. If stopping criterium is not reached, return to step 2)

6. Compute all PDCgrav

ij
according to the gravity model defined in Eq. 8
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MODEL EVALUATION
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USEFUL MODEL ?
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IMPROVING THE MODEL ?

• Difference between observed network and model. Random 
errors ?



IMPROVING THE MODEL ?

• Difference between observed network and model. Random 
errors ?

Yellow: well predicted

Red: overestimated

Black: Underestimated



IMPROVING THE MODEL ?

• Difference between observed network and model. Random 
errors ?

Yellow: well predicted

Red: overestimated

Black: Underestimated



MODEL OF 1ST MODEL 
ERRORS ?

• Incorrectly predicted trips constitute a new network
‣ Cannot be modelled by geographical gravity model (flat deterrence func)
‣ Socio-demographic gravity model ?
‣ Community structure ?



NON-GEOGRAPHICAL 
GRAVITY MODELS

• Deterrence function can be computed on any distance 
function (here, on top of spatial effect)

Altitude

Altitude difference (meters)

Job difference

Job difference (#job)



COMMUNITY STRUCTURE

• Community discovery (or graph clustering, SBM…)
‣ Searching for groups of nodes with similar connections behaviours
‣ Often dense groups less connected to the rest of the network, but not always

Community graph model:
Simple
Degree-

Corrected



COMMUNITY STRUCTURE

(a) Configuration Model (NG) (b) DCgravity

(c) Gravity (d) Radiation

Fig. 3. Communities found on the Lyon BSS dataset, using di↵erent null models.

Fig. 4. Details of the two communities discovered using DCgravity null-model that
correspond to enjoyable/convenient trips in the city, that were hidden by the influence
of space proximity.

We could also investigate other usages besides community detection: null
models are used as references for properties such as clustering coe�cient, motif
frequencies, or, more straightforwardly, to discover the most significant edges
and nodes in a network.

Community 
Structure

of the 
Original
Network



COMMUNITY STRUCTURE

Community 
Structure
Of trips 

Unexplained 
By Spatial Model

(a) Configuration Model (NG) (b) DCgravity

(c) Gravity (d) Radiation

Fig. 3. Communities found on the Lyon BSS dataset, using di↵erent null models.

Fig. 4. Details of the two communities discovered using DCgravity null-model that
correspond to enjoyable/convenient trips in the city, that were hidden by the influence
of space proximity.

We could also investigate other usages besides community detection: null
models are used as references for properties such as clustering coe�cient, motif
frequencies, or, more straightforwardly, to discover the most significant edges
and nodes in a network.



COMMUNITY STRUCTURE

Community 
Structure
Of trips 

Unexplained 
By Spatial Model

(a) Configuration Model (NG) (b) DCgravity

(c) Gravity (d) Details DCgravity

Fig. 2: Communities found on the Lyon BSS dataset, using di↵erent null models.

and 343 nodes (stations). We use the great circle distance between stations to
learn the deterrence function, although the di↵erence with euclidean distance is
negligeable for such short distances.

In Fig. 2, we can observe the communities discovered using the Louvain
algorithms and di↵erent null-models. Using the usual configuration model, com-
munities correspond to geographical areas of the city, matching more or less
arrondissements (city districts) of Lyon. Results obtained using Gravity and
Degree Constrained Gravity are comparable, but the DC ones are even less
spacially constrained. The most remarkable ones, highlighted in Fig. 2(d), cor-
respond to convenient and enjoyable routes along banks of the rivers and parcs.
These clusters were only partially discovered using the usual gravity null-model,
and arguably correspond to typical usage patterns of Lyon’s BSS.

4 Conclusion

In this article, we have shown the interested of using a degree-corrected null-
model, by focusing on community detection. Such a null-model has many other
potential applications: it can be used by bike sharing planners as a model of trip
prediction, and as such, can help to predict the activity impact on the global
activity of adding or removing stations. It could also be used to estimate the
interest of users toward a station, independently of its relative position to others,
or to estimate more accurately the influence of distance.



MIXED MODELS ?

• Validation on synthetic cases: 
‣ Generation of networks with both a spatial and community structure.
‣ Can we discover both of them ?
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Fig. 1. Results for the synthetic benchmark, using a generative Gravity model. In
fully informed cases, the gravity null-model is the most e�cient, while the proposed
DCgra model gives best results when only the network and position of nodes is known.

In the Network/Position Only version, we consider that we only know
the observed network, and the position of nodes. The deterrence function is first
computed from these data, when needed, and the degree of nodes is used as
proxy for the intrinsic importance of nodes, as it is often done in applications
to collected datasets, for instance in [7, 8]. This setting is more realistic, for
applications to real world datasets.

4.3 Results

In Fig. 1, left column, we present the results for the synthetic benchmark with
a generative gravity model, and the fully informed case. As expected, the Gra
null-model is the most e�cient. We can observe that the problem becomes harder
with the increase in the exponent of the deterrence function. In fact, the more
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In Fig. 1, left column, we present the results for the synthetic benchmark with
a generative gravity model, and the fully informed case. As expected, the Gra
null-model is the most e�cient. We can observe that the problem becomes harder
with the increase in the exponent of the deterrence function. In fact, the more



TAKE-HOME MESSAGE

• Complex systems organisation can often be modelled by 
networks

• Different network models exist

• Complex networks can probably be explained by a 
combination of factors, i.e. a combination of models
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PROPOSED NULL MODEL

• Problem: Does not conserve degrees !
‣ Central nodes have higher degrees
‣ Those at the periphery have lower ones.

Several articles [10]–[12] reuse this approach in different
applications.

In this article, we will first show that this spatial null-
model has a systematic bias towards higher degrees for central
nodes. We will then propose a new spatial null-model that
correct this bias, conserving both the degrees of nodes and
the characteristic deterrence function of the network.

II. GRAVITY MODEL AS A SPATIAL NETWORK
NULL-MODEL

Gravity models [9] have long been used to model and
predict traffic flows [13], [14]. It has been shown that gravity
models can be used successfully to model the volume of
interaction between distant locations in other domains, such
as mobile communication between cities [15].

The original definition of the gravity model is [16]:

Tij = K
PiPj

d�ij

with dij the distance between these two locations, Pi

(respectively Pj) the population at location i (resp. j), �

an exponent whose value depends on the system, and K a
constant. This definition is reminiscent of Newton’s law of
universal gravitation, hence its name.

A more general definition is found in recent literature,
expressed as [14]:

Tij = OiDjf(d(i, j))

A difference is in this case made between Oi and Dj , the
Origin and the Destination, due to the potential imbalance of
trips originating and bound for location i. For instance, during
the morning rush hours, a residential area i will have a high
Oi but a low Dj , and vice-versa for a business district. The
nature of Oi and Dj is data-dependent. In this version of the
gravity model, the deterrence function has no specific shape,
and is also data-dependent.

Some more complex models have been proposed, for in-
stance [17]:

Tij = O
↵
i D

�
j f(d(i, j))

We will only work with the simple version in this article,
but the model we propose can be straightforwardly adapted to
more complex variants.

A. Estimating the deterrence function

When a gravity model is used to model a system without
known data, the deterrence function is chosen among some re-
alistic decaying laws. When used to produce the null model of
an existing network, the deterrence function can be computed
from data. Similarly to [7], we can define a deterrence function
by computing, for each discretized distance, how much more
journeys we observe at this distance in the data compared
to the number we would obtain in a random model without
distance.

f(d) =

P
i,j|dij=d AijP

i,j|dij=d OiDj

A CB D1 1 1

d d d

Fig. 1. A toy example for the bias of heterogeneity. DA = 1, DC = 2,
OB = 2, d(A,B) = d(B,C) = d. As a consequence, according to the
typical gravity model, TBA = OBDAf(d) 6= TBC = OBDCf(d), which
is incompatible with observations.

B. Potential and Observed Power of Attractions

We have seen that in the original version of the gravity
model, Oi and Di were constant corresponding to some
properties of the node, such as the number of inhabitants
or jobs in the area represented by the node. However, when
working with an already existing network of flows, it is
possible to estimate the values for the property of nodes for
being an origin Oi or a destination Di as the degrees of nodes.
Explicitly, we choose: Oi = deg

out(i) and Di = deg
in(i),

where deg
out(i) and deg

in(i) are respectively the out-degree
and in-degree of node i.

However, there is an important difference between using an
Potential– or intrinsic – value, such as the number of jobs
in a zone, and an observed value, such as the in-degree. In
the original gravity model, the value associated to a node
represents its potential interest, and is intrinsic to it. As a
consequence, a flow starting at an equal distance of two
nodes with the same number of jobs, i.e. the same power
of attraction, will have an equal probability to go to both of
these destinations. On the contrary, the observed value depends
both on the power of attraction of the nodes and to its spatial
location.

Fig. 1 illustrates the consequences of this difference. It
represents four nodes A,B,C,D, with d(A,B) = d(B,C) =
d(C,D), and three flows between them. Observed in-degrees
are: deg

in(A) = 1 and deg
in(C) = 2. However, we can

observe that a flow starting from B has a similar probability
to go to A and to C, therefore the potential of attraction of A
and C are similar, and the greater observed in-degree of C is
only due to its more favourable location, having two sources
at distance d, while A has only one.

C. Systematic Bias in Observed Data

The consequence of this phenomenon is the existence of a
systematic bias towards nodes having a central location when
using observed in/out degrees as values for Oi and Di in a
gravity model. In this section, we illustrate this bias in two
datasets: a dataset of bicycle trips, and a synthetic dataset.

1) The Bicycle Sharing System dataset: presented in [18],
it corresponds to all bicycle trips done in 2011 in the city of
Lyon, France, using the bicycle-sharing system called Velo’v1.
Each trip has a specific origin from a static station in the city,

1The authors thank JCDecaux (Cyclocity) for having provided access to
the Velo’v dataset


